IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Symmetry-adapted states for T(X)(e+t2) Jahn-Teller systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys.: Condens. Matter 4 6775
(http://iopscience.iop.org/0953-8984/4/32/014)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.159
The article was downloaded on 12/05/2010 at 12:28

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/32
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matter 4 (1992) 6775-6796. Printed in the UK

Symmetry-adapted states for TQ (e+t,) Jahn-Teller systems
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Physics Department, The University, Noutingham NG7 2RD, UK

Received 10 April 1992

Absfract. A complete set of symmetry-adapted vibronic states for strongly coupled
orthorhombic T@(e + t) IT systems are derived analytically using projection operator
techniques from the exact infinite-coupling states. Details are given for the case of a T,
orbital state at a site of tetrahedral symmetry T3. The purpose of this calculation is to
provide a complete set of basis states from which it is possible to calculate analytically the
second-order reduction factors for this JT system as shown in the companion paper. The
states are used here to obtain the energy level diagrams for the first few excited states
using appropriate choices for the parsmeter values. The results compare favourably with
numerical results obtained elsewhere for similar sysiems,

1. Introduction

In the course of modelling experimental data from deep-level impurities in bulk semi-
conductors, it is clear that orbital triplet states are generally very strongly coupled
to the surrounding lattice. It is also clear that T, orbital states in tetrahedral T,
symmetry are often more strongly coupled to the t, modes of vibration than to the e
modes. In other examples invelving T, orbital states, the coupling strengths are very
similar such that the tetragonal and trigonal minima in the potential energy surface
have very similar energies. If exact equality holds, the system is often referred to as
a Ted Jahn-Teller (JT) system indicating explicitly that there is a continuum of equal
energies in the potential energy surface such that the vibrations can be classified
as having fivefold symmetry (see, e.g, O’Brien 1969, Bersuker and Polinger 1989).
Our interest here is in the situation in which the coupling to the e and t, modes is
approximately equal but additionally there are important quadratic couplings present
that convert the orthorhombic saddle points into minima that have a lower energy
than both the tetragonal and trigonal minima. This situation is usually referred to as
an orthorhombic T@(e + t,) JT system.

One of the most obvious examples of this type of IT effect is that of GaAs:Cr3+.
Krebs and Stauss (1977) clearly showed that their EPR spectra exhibited orthorhombic
symmetry. Recently, Parker et a/ (1990) re-analysed the original EPR data and, to-
gether with new data obtained from thermally detected- (TD-) EPR experiments, they
confirmed in detail the original attributions of Krebs and Stauss (1977)—that the 4T,
undergoes a T®(e + ty) IT effect.

To model systems such as these, it is necessary to construct effective Hamiltonians
that contain the various electronic parameters describing the perturbations multiplied
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by the JT reduction factors that arise from the coupling of the jon to the vibrations.
First-order reduction factors reduce the size of the electronic parameters but second-
order effects often introduce new terms. If the coupling is strong, second-order terms
can dominate the effective Hamiltonian (Ham 1965). It is therefore important to
be able to calculate the size of both first- and second-order reduction factors in an
accurate way from basic JT theories. Very little work had been undertaken on second-
order factors until very recently when Bates and Dunn (1989} calculated the first- and
second-order factors for spin—orbit coupling for the T@e and T®t, JT systems based
on their transformation method (Bates ef af 1987, Dunn 1988, Dunn and Bates 1989z).
Dunn and Bates (1989b) carried out a similar analysis for the T®(e + t,) JT system.
In all these calculations, symmetry-adapted vibronic ground states were used but the
excited states were approximated to the so-called infinite-coupling states localized in
the various potential energy minima. However, for T®e systems, the result was exact
and agreed with that originally obtained by Ham (1965) but the results for the two
other systems were only approximate.

Calculations for T®t, were improved, firstly, by Dunn et o/ (1990) using the
symmetry-adapted excited states derived by Dunn (1989) and, subsequently, with the
incorporation of so-called anisotropic effects in the oscillator frequencies (Bates ef af
1991). The result was that analytical expressions were obtained by algebraic means
that were in very good agreement with the numerical results of O’Brien (1990).

The main aim of this paper is to undertake a calculation of the symmetry-adapted
excited vibronic states for the T@(e + t,) JT system following the method previously
applied to the T®t, JT system by Dunn (1989). The following paper (Hallam ez af
1992) then uses these states to calculate accurately and analytically the corresponding
second-order reduction factors and comments on the results obtained in relation to
real systems.

2. The basis of the analytical method for T, ions

2.1. The infinite-coupling approximation

The basic JT Hamiltonian for a T, ion in a tetrahedral cluster coupled linearly to the
e (Qy, @.) and t, (Q,, Qs Q,) modes of vibration can be written as

H=3Ve(esQ~ V30, Q) + 32 (~VB/2)%hQm,

1=4,5,6
+ > (ﬁ+——lﬂ—“w2 f) 2.1
. 2p 2
i=8,e,4,5,6

where Vg, Vi are the e- and t,-type linear jon-lattice coupling constants, P; is the
momentum conjugate o @, and p is the mass and wg, wy the frequencies of the
modes such that w, = w, = wg and w, = ws = wg = wy. The p; and 1; are orbital
operators defined in terms of an jsomorphic ! = 1 by

pg =312 —2 pe=—32 +1%) Ty = —(l,l, +1.1,) etc, (2.2)
where the orbital basis states are given by

l2) =~V - 1-1) | =GVDUY+I-1) |2 = o)



T®fe+t,) 7T systems: 1 8777

referred to Oz as the twofold axis of quantization. Modes 4, 5, and 6 transform as
yz, zz, and xy respectively under T, symmetry.

In the transformation and energy-minimization method developed originally by
Bates et af (1987) and Dunn (1988) for strongly coupled systems, a unitary transfor-
mation

U=exp(iZQij) j=6,e,4,5,6 2.3)
i

was applied to H where the «; are free parameters chosen to minimize the potential

energy in the transformed Ham:]toman #H. In the strong-coupling limit, the trans-
formed Hamiltonian is dominated by H ; which does not contain phonon operators, o
the system is fixed into one of the energy minima. (The remaining parts, H, and H,,
involve terms that can be regarded as perturbations as they describe both phonon and
orbital excitations which are then conveniently associated with these energy minima.)

In the transformation method, the @; and P are treated as phonon operators
via the standard relationships

1/2 172
ﬁ,w
QJ,:( A ) (b; +b) Pj_n(‘t; ) (b; —bf) (24

2pw;

where bF and b; create and annihilate excitations of symmetry j respectively,
Using (2.4) the unitary transformation operator can be written in second-quantized
form

U= exp[z C;(b; - b} )} (2.5)
7
where the coefficients C; are defined in terms of the «; by

ﬁpw- 1/2

The part ’ﬂl of the transformed Hamiltonian is given by

H, = ~2Kg(ppCy — V3p.C,) — 2Ky (7,Cy + 15C5 + 16 C6)
+ D hwi /24 Y R CF @
i ;

where the coefficients Ky and Ky are defined by

1 h 1/2
He=—3 (Q#ws) Ve

1/ 38 \/*
Kr= 3 ( QWT) Vi (2.8)
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The six energy minima or wells (labelled by k =1 to 6) are at positions -ag-k)h

in @-space. Values of ot and the corresponding transformed vibronic ground states
are given in Bates ef al (1987).

The orthorhombic solutions cannot become absclute minima when only linear
terms are included in the Hamiltonian. In the problem of interest here, it is therefore
necessary to add in the quadratic coupling terms. The most appropnatc is that of the
bi-linear coupling HEL (Sakamoto 1682) which, if of a suitable size, pushes the six
orthorhombic saddle points into six absolute minima in the potential energy surface.

To a good approximation, this bi-linear term does not alter the values of the o'*) and
thus for the purposes of the derivation of the states, the bi-linear and other similar
terms can be omitted.

2.2, Infinite coupling excited states

The ground states localized in the six orthorhombic wells can be transformed back
to the original space by operating with the unitary transformation operator (2.5) and
substituting the values of the a appropnate 1o the well in question. For example

lzyf, >= Uj|zy,;0 >

where

K K.

The states are often referred to as ‘Glauber’ states after Judd and Vogel (1975).
Although the ground states localized in the wells do not contain phonon excitations,
the presence of phonon creation operators in the unitary transformation operator
means that untransformed states such as |zy/ > do contain phonon excitations. As
a result the untransformed states are automatically vibronic in nature without there
being a need for multiplying the electronic states by harmonic oscillator functions, as
there was in earlier methods.

In the infinite-coupling limit, the potential barriers separating the six potential
enetgy minima can be considered as infinitely high with the ground electronic states
completely localized within the wells. The localized vibronic excited states in the
untransformed basis can be written as

|z, ; 0he2475%6") lyzl; 671475°6") |zay ;60 ela5°6%) (2.9)

where, for example, 47 denotes r phonon excitations of the t, vibrational mode Q..
The cubjc components of the e-type modes are defined by

0y =20+ Ll 18y =-210-Llg  18y=1) @10
=-Li-llo  l=Lo-tig  le=lo. 2.11)
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2.3. Finite coupling

In finite coupling, the vibronic states associated with the six orthorhombic wells are not
good cigenstates of the complete Hamiltonian as they are neither mutually orthogonal
nor do they refiect the cubic symmetry of the system. However, as in the case of the
T&(e + t,) IT system, linear combinations of the untransformed vibronic states may be
taken that are good eigenstates as they are both cubic and partially orthogonalized.
At this stage, the cubic states cease to be connected by a unitary transformation.
Projection operator techniques were used to construct cubic ground states (Dunn
1988) and cubic excited states (Dunn 1989) for the T®t, IT system from the various
untransformed states associated with the trigonal wells. In the following section, the
same techniques will be used to construct the required combinations in order to
obtain the cubic states for the orthorhombic T@(e + t;) IT system.

3. Symmetry-adapted excited states

3.1. Use of projection operators

A set of symmetry-adapted states may be obtaincd from a set of non-symmetrized
states | ¥ > by the application of appropriate projection operators. The general
theory is summarized in appendix 1, where it is shown that the set of projection
operators {P7, g» =110 I;} will project out of a state of arbitrary symmetry a set
of basis states for the irreducible representation IV or zero. Details of the method
as applied to the T®t, system and expressions for the projection operators P74 for
T, symmetry are given in Dunn (1989). The localized infinite-coupling states (2.9)
can therefore be used as a basis for the construction of a complete set of symmetry-
adapted excited states for the system. Due to the symmetry relations between the
infinite-coupling states all the distinct symmetry-adapted excited states can be found
by operating with all projection operators on one of the infinite-coupling states. As
an example, applying the projection operator

PR = L (E-3C] - 3C] + 3C3 + 6IC] + 6ICE — 6IC5 — 8IC5)
to a general excited state localized in well 1, [§} = [z, ; 627475°6"), gives
PR1EY = (1 + (=1)7*°) (loy; 07e14°576%) + (=1)°F|ay’ ; 67147 576%)
+ (~1)%]2w); 0567 4°5%67) — (—1)75+ |22l ; 60c34°5%67)).  (B.D)

The two other T, states are given by a cyclic permutation of z, y and 2. The factor
(1 + (=1)"**) will vanish when (r + s) takes odd integer values resulting in the
constraint on the phonon quantum numbers that (r 4 s) must be even for this state,

This approach is applied to the infinite-coupling state |¢) for all the irreducible
representations of T, to generate a complete set of symmetry-adapted excited states
for the system. The states, along with their transformation properties and the re-
strictions on the phonon quantum numbers, are given in table 1 in terms of the
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Table 1. Symmetry-adapted excited states in terms of coefficients ¢, appearing in equation
(3.2), including restrictions on phonon indices.

State €] €2 €3 ©Ct ¢©€5 ¢g CF cg ¢cp cCio €11 c1z  Restrictions

¢ty 1 1 -1 1 1 1 -1 1 1 1 =1 1 (r4s)oddr>s

f¢g2y 1 1 1 -1 1 1 1 -1 1 I 1 =1 ({rts)loddr>s

leSey 2 2 =2 2 -1 -1 1 -1 =1 =1 1 =1 (r+s)odd,r>s
g5y 0 ¢ 0 .0 1 1 -1 {1 =i -1 1 =i

[¢fy 0 0 0 0 -1 -1 =1 1 1 1 1 -1 (r+a)oddr>s
[¢Bey 2 2 2 =2 ~L -1 =1 L =1 =1 =1

{¢f*y 0 0 1 1 0 0 0 O 1 -1 6 0
¢y 1 -1 0 © 0 0 1 1 0 0 0 0 (r+s)even
l¢g? 0 0 0 0 1 -t 0 0 0 O I 1

l¢2*y 0 ¢ 9 o 1 -1 1 1 @ 6 & o
¥y 0 ¢ 0 6 0 0 O ©
l¢f2*y 1 -1 1 1 ©0 © 6 06 0 0 0 O

—
1
-
-
-

{r+s)odd, r > 2

652"y 0 ¢ 1 1
[¢72%y -1 1 0 0 o0 o 1 1 @ 6 0 0 (r+s)even
J¢32*y 0 0 0 0

[N T T T A

¢y 0 0 o0 o0 -1 1 1 1 0 0 ¢ 0
2% 0 0 0 0 0 0 0 0 -1 I 1 1 (r+s)oddr>s
l¢fg®y =1 1 1 1 0 6 0 0 0 0 0 0

coefficients ¢; of the general state

[6(p,as 7y 5,8)) = €|t 07e3475°6) + p(~1)"F |zyl; 65el475°6")
+ eg(~1)? w3l ; 0224°576") + ¢ (—1)7TH 2y 0724°576")
+ ¢5yz); 02e14'576%) + cg(—1)° T {yzl ;0P 247576°)
+ e7(=1)9|yz; B2e2475767) + cy(~1)74*H|yal ; 6262415°67)
4 cg|2zl 85e3475°6") + c)o(—1)* |2zl ;0P el475'67)

+ e (—1)922),; 07547576%) + ¢,5(—1)77* |22’ ; 675475 6°).

(3.2)

From table 1 the T, and T, ground states are given by
[617(0)) = |2t} + loyl) + |22, ~ |z2') (33)
|6727(0)) = |y} + |2yl ) + [z2ty) — Joal). (3.4)

respectively, with the y and z components given by cyclic permutation of z, y and z.
Thesc are the ouly vibronic ground states allowed by the restrictions on the phonon
numbers and agree with expressions previously obtained by Bates er al (1987).
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3.2. The number of excited states

The number of distinct vibronic excited states obtained using the projection operator
method of the previous section can be calculated directly from the restrictions on the
phonon numbers. By counting the number of excited states for specific numbers of
phonon excitations it is found that

(a) for states with the restriction (r 4+ s) even

WM+ 1}(N +2)? N even

number of states = { 2
M+ 1)(N+1) N odd

(b) for states with the restriction (» -+ s) odd, » > s

number of states = é(M T DON(N +2) N even

T\ MM 1)(N+1N+3)  Nodd
where the total number of phonon excitations, L, is given by L = M + N with M
and N denoting the total number of e- and t,-type phonon excitations such that

M=p+g N=r+s+1t.

The numbers of vibronic excited states for each irreducible representation of T,
calculated from the above results, are given in table 2. In appendix 2, the number of
excited vibronic states is calculated using group theory and shown to agree with the
results given in table 2, thus providing an important check on the completeness of
the symmetry-adapted basis.

Table 2. Number of vibronic states of each symmetry I' with M (= p + ¢) e-type and
N (= v+ 3+ t) t2-type phonon excitations.

r N even N odd

Ay L(M + 1)N(N +2) MM+ D(N + 1)(N+3)
Az s(M+1)N(N+2) HM+1)}(N+1)(N+3)
E (M +1)N(N +2) LM+ 1) (N+1)(N+3)
Ty M+ 1){N+2)(3N +4) S(M+1)(N+1D{BN+35)
T M+ 1N+ 2}IN+4) M+ 1}(N+ 1)(BN +5)
Total 3{(M+ 1N+ 1}N+12) (M 1N+INN+2)

3.3. Normalization factors

The normalized symmetry-adapted excited states can be written in the general form
197 (p, q,7.5,1)) = Ni(prguris,8)]8; 7 (Pygs 1y 5, 1))

where I'+y denotes the symmetry of the state. The normalization factors are deter-
mined by the requirement

(‘IIE.Y(p, q. r-,s,t)[lIJF'Y(p,q, ™ S’t)> = 1.
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We write the vibronic states as a product of an orbital part | X[} and a phonon part
|X,). Then calculation of the overlaps (1] "|] ") requires expressions for overlaps
of the general form

(XY XPIXE X = (XPIXENXP|UIU, X

= (XPIXE) P exp [ DIV - 8] 1X09)

= (XPIXE)SXPexp |3 DEVs | exp [ 3 D8 109

(3.3)
where
1 .
S = exp [_EZ(DEJH)?] (3.6)
with
DY® = ci) _ o®, @7
Substituting values for D?k) shows that the only distinct values of S are:
(a) § =1 when j = k such that ()s’f,“lX.{:k)) =1
(®) S = 5,, when (X§|x{)y 0
(© S =, when (X&) X{P) =0
where
_ o[ 37 KeN [ Er\?
sa=ew|-3 (52) - (i) o9
and
— Kr\?
Sa=en[-2(22) |- 69

(Note that although 5, does not appear in the calculation of the normalization
factors, it is needed in the evaluation of certain perturbations and (3.9) is given for
completeness.)

For the T®(e + t;) IT systems, the phonon overlap in (3.5) takes the general
form

(0Le24'5™6" exp [Z DY '%;P] exp [- S oY k)b,-J 6554756 (3.10)

where o, 8 = xz, y or z. The phonon creation/annihilation operators corresponding
to different phonon modes commute and so the overlaps between phonon modes can
be considered separately.
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For the Q, mode

2 (R p+ kY720 ik yi
(41[ [Z (D4 h!b-l ) ] [Z: ( in! b4) ]|4r)' (3.11)
h=0 i=0

Using standard formulae, this overlap becomes

D (DYNE(= DY) ri(r + b — )]/

AL (r — §)! (4l

h=0i=0

and since (4/[47+h-%) =5, ., . the overlap between @, modes can be written as
(4'|exp [ DFPbt] exp [~ DY My} 147 = Byt vy b, k) (3-12)

where

b

FM(aabaja k) = (alb!)IIQZ
t=A

(_I)i(D'ﬁk])zﬁa-b
i a-—-b)I(b—i)

(3.13)

with M = 8,£,4,56 and XA = max(0,b — a). Results similar to (3.12) are obtained
for modes 5 and 6.

The overlap between phonon modes of e-type symmetry is complicated by the
appearance of @, y and z components of & and . However, the required operators
can be obtained directly from (2.10) and (2.11). These operators can be used to write
the e-type phonon states in terms of the phonon vacuum state |0}, for example

r
1020 = (68710 = = (- 35 + 02 ) o)

which on expansion of the bracketed term gives

o
(_l)p-a\/‘l_‘(\/g)a —a @
192 = 3 rarp—agr OG0,

Similarly

SRS ~(-1)0VEUVB)ITP s
| 3.-)_{32=0 2931(q - B)! (b)9P(b1)P10}.

Combining the last two results and operating on the phonon vacuum state gives

P 7

0263y =3 D (-1)"9G(p, g, @, B) gPHI7*"FcF) (3.14)
a=0g4=0
where
G(p,a,a, ) = TR APl (p + g — o= B+ BN 0

2r+2al(p - )1l (g~ B)!
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Similarly
hd q
923y = > Y (-1)2G(p,q, o, B)|97T9 2P F) (3.16)
o=08=0
and
182£3) = |6Pe9). G.17)

Using the above expansions, the e-type phonon overlaps can be written as, for
example,

(6ed|exp[ DY b} + DI¥ot] exp[- DY by ~ DE*Ib,] o2l

g
Z 17°G(f 9,0, B)Fg(f +g— = B,p,d, k)

1 M‘*

x Fs(a + 8,9, k).

The excited states localized in the six orthorhombic wells are effectively different
solutions to the eigenvalue problem for H,. As a result, these states arc symmetry
related under a cyclic permutation of z, y and z. For example, using the permutation

T Yy =z
¥y z
the excited state localized in well & = 1 is transformed as
|2y ; 079475°6%) — |y2’,; 827415767,

As a result of the symmetry between the excited states in infinite coupling, all
overlaps of the form (3.5} can be transformed by a cyclic permutation of x, y and =2
into one of six distinct overlaps

(zyy; 0Le24'5™6" [yl ; 07e1475°6%) (zyl; 6f59415’"6“|myf*_; fre1475%6%)

{yz!,;01c34'5™6™ [xy, ; 0P£I475°6") (y=L;0Le94'5™6™ |2y’ ; 672475%6")

(yz_; 8{ea'5™6" |2y, ; 07e1475767) (yz'; 0Le34’5™E 2y’ ; 87147576,
(3.18)

This particular set of overlaps is chosen since only xr and z components of § and &
are involved, which reduces the number of summations required in the calculation of
the overlaps.

Substituting for DE"“, the t,-type phonon overlaps can be written, from (3.11)
and (3.13), as

F(a,b,3,1) = Fy(a,b,3,2) = F(a,b)
F,(a,b,4,1) = Fy(a,b,4,2} = (-1)"** F(a,b)
Fe(a,0,3,2) = Fy{a,b,4,2) = Fi(a,b)
Fy(a,6,3,1) = F,(a,b,4,1) = (—1)*** F(a,b)
Fi(a,b,j, k) =§,, forj=3.42nd k=1,2
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where

_l)i(}'(T/mT)l’i-i-a-b
Midta— b b3

b
Fa,b) = (a!b!)lfzz( (3.19)
=X

The only e-type phonon overlaps required for (3.18) are those between z, or z
and = components of # and £ and can be written as

(04 el exp[ D6} + DYPBF] exp[-DF Vb, — DUMb, 10268 = 8, .6,
(0fedlexp[ D§ b} + DIRb}]exp[— DY Hb, — DURb J|67e2) = P(f,p,g.9)

respectively, where

f 9
P(f,p,0:0) =D D (=1 G(f. 9, . B)F4(f + g — o - B,p)Fi{a+ 8,9)
a=0g8=0
(3.20)
and the functions Fj and F] are given by (3.19) with Kg/fw replaced by
—3 K /2hwg and —v/3 Ky /2hwg respectively.
Using these results the normalization factors for the symmetry-adapted excited

states, V;(p,q,r,s,t), can be calculated. The results are summarized in table 3.

Table 3. Mormalization factors for symmeiry-adapted states |‘If{|7(p,q, T, 3,3

Ntz g.mi0,8) = {12 - 1250(-1)7P(p, 5y 0, ) [Fels, 0 + Rur 2]} 77
N‘I(p)Q: y 3|t) = {12 + lzset(—l)qp(p,p,q’q) [F:(s,t)z + Ft(’r,t)z]}_llz

Na(p,g,7,8,0) = {24+ 125a(-1)?P(p, p, 4, D) [Fi(s, )" + Fi(r, t)zl}_”?

Nylp,q,r s,1) = {8 + 45 (-1)*P(p,p, ¢, q)[Fz(S, 0%+ Fi{r, ﬂ"]}_ll2

Ns(p,g,7, 8,8} = {8 - 45a(-1)TP(p, p, 9, 0) [Fils, )° + Fi(r, z)z]}_m

~1 /2
NG(P,QHT,SJ) = {24 - 125!‘(_1)qp(paP7Q?9) [.F:(S,t)z + Fn(f‘,t)z]} !

-1/2
N‘I.S.S(Pu g 7Ty 8,1) = {4 + 45‘“(_1)91'_)(1,‘})’ e Fi(r, t)z}

Niga1,12(p, 9,7 8,t) = :T
21 -1/2
Nis1e13(p, g,y 5, 1) = {4 = 4Sa(=1)7P(p, p, 0, ) Fel 7, )7}

Nlﬁ,l?,lﬂ{Pﬁ g7 8, t) = %
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4, Excited state energies

The discussion in section (2.1) stated that the orthorhombic solutions for the T®(e
+ t,) JT system cannot be absolute minima when oniy linear terms are included in
the Hamiltonian. When calculating the energy eigenvalues of the symmetry-adapted
excited states it is therefore necessary to include higher-order terms in the Hamilto-
nian so that the system may show orthorhombic behaviour. The results of Sakamoto
(1982), and references therein, show that of the four quadratic terms the bilinear term
HEL has the most profound effect on the energy levels in the case of nearly equal
coupling to the e and t, modes. This agrees with the earlier findings of Bersuker and
Polinger (1974) that the bilinear term produces the most fundamental change in the
shape of the adiabatic potential surface, Thus, in the following calculations M- will
be included to allow the system to become orthorhombic. In second-guantized form
this term becomes

1 V3
B = Ko { [-3 000+ 3 + S(b + 80|y + 81,
1 +y_V3 + + + +
+ "“2'(59‘1'59)‘—2*(5;‘1‘5;) (by+ b7 Yrg+ (by+ b3 )b+ 85 ) 7g
@1
where
KL K

Ky = —2=-E_Tvw . 4.2
BL V.V, VEL 4.2)

4.1, Matrix elements

The energy expectation values of the vibronic states are given by the matrix elements
(97 (2,0, 8, )18 (p1 g, 7,5, 1))

where the Hamiltonian, with bilinear coupling included, is given by
' ="H + HEL. (4.3)

Calculation of these matrix elements requires evaluation of the matrix elements
of H' between the infinite coupling states, which take the general form

(XM XD X0 x oy,
As for the normalization factors, the symmetry relationships between the infinite-
coupling states localized in different wells can be used to reduce the number of
matrix elements required in the calculations. It is found that all matrix elements of

M’ between the infinite-coupling states can be transformed by a cyclic permutation of
z, y and =z into one of the seven distinct forms given below

Ey(f.g,l,m,nip.g,r,s,t) = {2y} ; 9,{5-‘;'415”‘6"[?{'].1:3;;; 6Pei475°6t)
Eo(frg,bm,n;p,q,7,8,t) = {xy.;0]e34'5™6" [ |xy’ ; 0PeT1475°6")
E(f,g.l,m,n;p,q,7,8,1) = {2y ; 81 e94'5™6™ 1! |ay! ; 82947 5°6")
Ey(f,g,lim,n;p,q,7,8,1) = (yz}; G£s§4i5m6“]7{’[wyfi_; 02:2475°6%)
Byl fog,l,m,nip,q,7,8,1) = (yzfi_-,6'{.51&5"‘6“!7‘(’!31;’_;62514"5’6‘)
Ey(fig,l,m,n;p,q,r,s,t) = {yzl;0/e54'5™6" [W'|zy), ; 02£1475%6")
E,(fig,l,m,n;p,q,ms.1) = {yz '9f594’5m6"|7{’]:r:y;; 87c9475°6%)

-y T
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where this particular set is chosen as the kets contain only z components of the &
and ¢ modes. After a considerable amount of algebra, and noting that f = p and
g = q for diagonal elements, the matrix elements above can be written as

KR K}
Ell(a; ﬁ) = 6i,r6m,a 611.,1! - hwE ﬁwT + ﬁwE(p + g+ 1)

+hwr(r+ s+ t+3/2) + 4% K Iil(m]
E

In’
- 2%1(1% [5n,:+1 vit+l+ 6n,t—l\/z]}
E

K K32
E22(a‘.lﬁ) = 6!,1'6111.,3 'S‘n.,t __ﬁ’:E—. - E + HUJE(P +qg+ 1)

Kg K
+hor(r b s 14 3/2) 4 455 T iy |
WE T

I
+2_EKBLI: nt+1'\lt+ +6nz 1\/_]}

Eip(a;8) =0
ESI(O‘; ﬁ) = (_l)n-HSet [Hém,sfl(a; JB) — 6m,s+1f2(a; )8) - 6m,s—1f3(a; 18)]
E32(a; B) = 5q [5m,sf1(a; B) - 6m,s+1f2(a; B8)— 6m,3—1f3(a; /3)] 4.4)

Ey(os B) = (=1)H (=10 5y [~b,,  [1( 06 B) + 6y oy fol 003 B)
+ 6m,s—-1f3(0‘; B)]
E-ez(ai ﬂ) = (_I)H-rset [6m,af1(a; ﬁ) + 6m.s+1f2(a; ;6) + ém,s-lfa(a; /3)]

where « and @ denote the sets of phonon quantum numbers {p,q,l m,n} and
{p,q,r,.s t} respectively and the functions f;(a;3) are gwen in appendix 3. It
is then straightforward to calculate expressions for the energies, ET, of the excited

states [¥] 7). These are given in table 4 in terms of the coefficients d; in the general
expression

Ef"(p,q,r,.s,t) = d,N;(p,q,r,s,1)?

X {Eyy(prq:72 8,10, 0,7,5,1) + dy Sy (1)

+ (1) {ds f1(p,as 1,7, 53 P, @, 5 ) + o fi(P, 9, £, 8,75 P, 4, 7y 5, 1))
+5r,s+1{dsf2(P:QstsTssipa%ﬁsst)+dsf3(P1QatassT'¥ £:q,8,7,t)}

4 8y o1 {dr oDy 0oty 8575 Py 4, 831 1) + da fa(Ph gs T sipy gy s, 1)1} (49)
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Table 4. Energies of symmetry-adapted states N’f""(p, g, 7, 3, 1)) in terms of coeflicients
d, appearing in equation (4.5).

State d} dy da d.q ds ds ﬂ’.';' da
1 12 2 i -1 -1 1 1 -1
2 12 2 -1 1 -1 1 1 -1
34 8 1 -1 1 1 -1 0 0
5 6 24 1 1 ~1 1 -1 0 0
7,849 4 -2 0. -1 0 0 0 0
10, 11, 12 4 0 0 [t} 0 0 0 0
13, 14, 15 4 2 0 1 0 0 0 0
16, 17, 18 4 0 0 [¥] 0 0 1] 0

4.2. Ground staie energies

From tables 3 and 4 the energies of the T, and T, vibronic ground states, equations
(3.3) and (3.4) , arc given by

1

o = ph LS § . ' 0y — .

Er, = EF(0) = gy 18a(030) - 28./,(0:0)] 5)
and

Er, = ER(0) = =gy [Bu(050) + 25.,(050)] @7

where ‘0’ denotes p=g=r = s =1t =0, with

_ 3 I\'l% I\’% - I(E I(T
and
1 3 5 KE KE 1 Ky K

These results agree with those obtained by Bates er af (1987).

4.3. The encrgy levels

In order to obtain physical insight into the energy level pattern, various assumptions
need to be made on the valucs of the many parameters. We thus take wg = wy = w
and then ensure that the orthorhombic wells are absolute minima by choosing the
parameter » such that it satisfics the two relations

. 1/2
Kp < (?_) (1-n) : e (4.10)

n 4

Ay 1\ (n—1) i
< (5;}-) Z 4.11)
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where n equals the ratio of the JT energies of the T®e system to that of the T@t,
system (Bates et o/ 1987, Dunn and Bates 1989b), and is defined by

1/2
Kg= (g) K. (4.12)

The energies of the first few vibronic states with 0 and 1 phonon excitations are
plotted in figure 1 (n = 1.2, Kz = —0.082) and figure 2 (n = 0.8, Kg = —0.036).

The potential energy minima in Q-space deepen with increasing coupling strength
and the vibronic excited states are good approximations to the exact eigenstates of
the system for strong coupling when the wells are separated by high potential barriers.
For weak coupling, the energies of the states can easily exceed these barriers and the
concept of distinct wells loses its meaning. Consequently, the method of constructing
excited states obtained from symmetry-adapted combinations of states localized in the
infinite-coupling wells breaks down for weak coupling. It is interesting, nevertheless,
to look at the behaviour of the excited states in the weak-coupling limit.

As Ky — 0 the states should reduce to a product of orbital states and harmonic
oscillator states of frequency w = wg = wy centred at the origin in (J-space. As
a result the energies of the states in the weak-Ccoupling limit should have relative
separations of fiw. Figures 1 and 2 show that the majority of the first few excited states
do tend to integer values of fw for weak coupling. However, the T, tunneling level
tends to a value slightly below /. The bilinear coupling constant Kp; is fixed such
that the orthorhombic solutions are absolute minima for the system. Consequently
Ky temains finite as Ky — 0 with the result that some of the excited states tend to
values slightly lower than the correct integer multiples of #w. It should be noted that,
for the orthorhombic solutions to be absolute minima, Ky < 0 with the equality
only occurring for the special case of equal coupling, n» = 1. For the T®t, IT system
the numerical work of Caner and Englman (1966) and the analytical results of Dunn
(1989) show that some /N-phonon states for strong coupling tend to (V¥ + 1)-phonon
states for weak coupling, which is also seen t be the case here.

0.0 0?5 1;0 ' 15 20 2.5

Ky M
Figure 1. Energies of the symmetry-adapted states as a function of Ky /hw for 0 and
1 phonon excitations, relative o the Ti ground state (y = 1.2, Kp = 0.082.)
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2.5 L S T S e e I St e S S S e ey

2.0

w
T

Energy/hw

)

0.5

0.0

K1/hw

Figure 2. Energies of the symmetry-adapted stales as a function of Ky /Aw for ¢ and
1 phonon excitations, relative to the Ty ground state (n = 0.8, K, = 0.036.)

Although states of different symmetry are mutually orthogonal, those of the same
symmetry are not. In principle the non-orthogonal states could be orthogonalized by
standard procedures, but this is not attempted here because the results would be very
complex and the advantages of having analytical expressions for the states, rather
than attempting numerical solutions, would be lost.

5. Conclusions

A set of normalized symmetry-adapted excited states has been obtained for the T@(e
+ t,) IT system by forming symmetry-adapted combinations of the infinite-coupling
states localized in the potential epnergy minima in Q-space. Group theory has been
used to show that the set of states is complete. General expressions for the energy
expectation values of the states have been obtained and the restrictions on the allowed
values of n and Ky in order for the orthorhombic solutions to become absolute
minima for the system are examined.

We believe that this is the first time that such a set of symmetry-adapted cubic
states have been calculated for the T@(e + t,) JT system. Also very few other calcu-
lations of the energies of the vibronic states exist in the literature. Some numerical
results have been given by Sakamoto (1982) while Estreicher and Estle (1985) calcu-
late the exact eigenvalues of the vibronic Hamiltonian with spin—-orbit coupling for a
spin of 1/2. Other calculations use the approximation of equal coupling for the e and
t, modes which is sometimes described as the T®d T problem. We mention here the
work of O'Brien (1969), Sakamoto (1982), Chancey and Judd (1983) and Chancey
(1987) plus the discussion in the book by Bersuker and Polinger (1989). However,
none of these latter results are directly comparable with the calculations described
here.
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The main purpose of the calculation is to provide a much more reliable basis
set of states from which the second-order reduction factors for the T@(e + t3)
JT system can be calculated. The only other previous attempt to calculate these
factors by analytical means was that published by two of the current authors (Dunn
and Bates 1989b) but the factors were overestimated because of the neglect of all
non-orthogonality. Although the states derived here are not completely orthogonal,
they represent a considerable improvement on previous calculations. The results
of improved calculations of second-order reduction factors using these states are
described in the following paper (Hallam et af 1992).
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Appendix 1. Projection operators

The projection operator method used in the construction of symmetry-adapted states
is based on the Great Orthogonality Theorem

0,5 Y1,

zr(i)(R);vF(”(R)aﬂ_ 6 T Vﬂ (ALD)
R

where R is a symmetry operator of point group G, h is the order of G and [; is the
dimensionality of the ith irreducible representation I'(®),

If{¢f)> k=110 1;} form a basis for jrreducible representation T'G) then
the completeness relation for the I"V) subspace gives

1 . .
> 186 =1
A=1
so that
. I} .
Pplel) >= 3" TU(R),,l¢5") (AL2)
A=1
where
T R)y, = (65| Prief )
and operator Pp is defined by

Pg|¥(r)) = [¥(Rr)).
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Multiplying (A1.2) on the left by T()(R); 5, summing over all R € G and using the
Great Orthogonality Theorem (Al.1) gives

Piﬂ|¢§¢j)) =6 ; 63,k!¢g)> (AL3)
where the projection operator P}, is defined as

i
af —

Zr‘*)(m s Pr

R

b o ol

A state of arbitrary symmetry, |¥), can be expanded using the completeness condition
for the total Hilbert space spanned by the basis states of the irreducible representa-
tions of G

e
=23 =190
J=1lv=l
where
=if) = {o{/ 1)

and c is the number of classes in G. Operating on |¥ > with projection operator
Pag and using (AL3) gives

¢ e 1
510 = zzm(np;ﬁw(:) ZZ 26 185, 160
j=1lr=1 i=1w=]
= 2 1ly. (Al.4)

This result shows that the projection operator P% ; will project out of a state of
arbitrary symmetry a basis state that transforms as row e of the irreducible represen-
tation ¥ or zero.

Appendix 2. Calculation of number of states

In this section, group theory is used to show that the numbers of states of each sym-
metry for a given number of phonon excitations agree with those already obtained by
the restriction on the phonon quantum numbers and given in table 2. This calculation
is important in verifying that the correct number of states has been specified.

In order to calculate the number of excited vibronic states using group theory it is
sufficient to find the number of irreducible representations contained in the reducible
representation formed by using the infinite-coupling excited states as a basis. The
infinite-coupling state localized in the jth potential energy minima can be written in
the general form

XG0 X9 X (a2.1)

orhit?
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where IXf‘f,,)i;) represents the orbital component and |X§’)) and |Xt(_,;T )) ¢ and t, type
phonon components respectively. The reducible representation formed by vibronic
states (A2.1) can therefore be written as the direct product of the component orbital
and phonon representations

Pt = Lo @ TM @ TV

where
M =r,er,@lr,o- - to M factors
I‘EV) =T, el',®l, ®:-- 1o N factors

and where M{= p+q) and N(= r+ s+ 1) are the number of e- and t,-type phonon
excitations respectively.

The group theory resuits used here only require the characters of the represen-
tations, each of which are considered separately below.

A21. The I, ., representation

The six electronic basis states, | X E,fi'l), form the reducible representation

Poon = Th + To- (A2.2)

This result is obtained either by direct construction of the matrices forming T 4
or by making use of the fact that the projection operator method of section 3.1
gives vibronic ground states of T, and T, symmetry. Using (A2.2) and the standard
character table for T, the characters for I, are found to be

Xobit (E) = 6 Xorbit(3C2) =-2 Xorbit(sjctl) = mei:(sjcz) = Xowit(8G3) = 0.
(a2.3)

A2.2. The I and Ft(jv ) representations

The characters of the representations formed by e and t, type phonon basis states
are more difficult to calculate than those of the orbital states. The phonon states
consist of degenerate phonon excitations and consequently for the e-type phonon
modes the characters of the symmetric part of the direct product TM) are required.

The character of an operator R € T in the i representation is given by (Heine
1960)

XPO(R) = 5 [x(RIXMI(R) + x(RY)

and substituting M = 0,1,2,... into this result for each class of Ty gives the
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required characters
xMUE) = (M + 1) all M
XMEC)=(M+1) al M

(M)(65C ,__‘_{1 ~ for M even
xs ' (IC) 0 for M odd

(M)(6]C,) = {1 for M even (A2.4)
Xe ¥71lo 7 for M odd

1 for M /3 integral
XE(*C) = ¢ 0 for (M +1)/3 integral

-1 for (M + 2)/3 integral.

Similarly, the recursion formula for the characters of the representation formed using
the N degenerate t,-type phonon excitations (Heine 1960)

XTO(R) = [2x (R)}\NV-1(R) + 5 {x(R’*’)~<x(R>>2}x<N-ﬂ(R)+xcRN)]
gives characters

xMI(E) = (N + 1)}{(N +2) alt N

(N+2)/2  for N even
X[, )(302)
—(N+1)/2 for N odd
1 for ¥ /4 integral
XE,N)(SJCQ =<0 for (N + 1}/4 or (N +2)/4 integral (A2.5)

-1 for (N + 3)/4 integral

{N);6 (N+2)/2 for N even
tn ( Icz) =
(N+1)/2 for N odd

1 for N/3 integral

Nyede v —
th (°Cs) = {0 for (N +1)/3 or (N + 2)/3 integral.

The reduction formula

Z Xu(R) Xea( H)

REQ

gives the number of times, n,, the irreducible representation T', appears in the
reduction of T'ey. Substituting the characters from (A2.3), (A2.4) and (A2.5), and
noting that the number of vibronic excited states of symmetry p is equal to the
number of times the irreducible representation I', appears in I, multiplied by the
dimensionality of T',, glves results identical with those calculated from the restrictions
on the phonon mdlces given in table 2.
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Appendix 3. Functions used in expressions for state energies

Definitions of the functions f;, f, and f; used in expressions for the excited state
energies are

hH(frg,lim,n;p,q,7,5,t)

— P(f,p,9: ) Fl,7) Fy(n, t)[ ¢, Kt

hwr
+ 1 Fy(n, O [VRF TVRFTP(, 0 4 L9, )R r 1)
+ VP + IVrP(f,p+ 1,0, ) (7 —1)

+voVr+1P(fip - 1,9, ) F(l,r +1)
+ \/;V/;P(fap— 1;91‘1)'&“1"“ 1)

e P10 9 VTR TR+ 1) 4 VPR = D)

+ %KBLF‘I(LT)[V e+ 1Vt+ 1P(faP+ lag’Q)Ft(nai'i' 1)

+ Vo + WiP(fip+ 1,9, 0)F(n,t—1)
+ VoVt +1P(f,p—1,9,9) Fy(n,t + 1)

+'\/—'\/-P(fs —I,Q,Q)F(ﬂ t_l)

=25 2 P(f,p g, VI F TR, 4 1) + ViR(m, t- 1)

+ 2 K FCL Y F(n, t)[ By (o FTP(ip+1,9,0)

KE

+\/_P(f, _1!ga(1’)} 4 RTFP(f,'P?g,Q):I

- %Ifﬁﬂcz,rm(n,n[\/—ﬁ TP(f,p,9:a+ 1)
+VaP(f.p.g,0- 1)
— SKrP(f,p,0, ) F(m, )V F TR+ 1)+ ViR r = 1)]

- {iffm_ﬂ(n,t)[\/q+ 1yr+1P(f,p,9,9+ V)R, r+1)

+Veg+ 1V/rP(f,p, 9.9+ 1) F(L,r~1)
+ Vo r+1P(f,p.g.g - 1) (L, 7+ 1)
+ \/E\/Fp(f';p!gaq - 1)-Ft(£$r - 1)]

— 2P0, F(L ) F(n, 1)

x |hwg(p + +1)+M(r+s+t+3/2)+ﬁ+ﬁ
E\P T ¢ Fog Ry
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fz(f,g,l,m,n;p,q,r,s,t)

= RUAR VT H o [VeFTP(Lp + Lgia)
+ \/;P(.f$P_ 1,9?‘1)_2%})(.’.’?597‘1)]
E
J3 _
+ KL [Va+ 1P(frp,0,9+ 1) + VaP(f,p.g9,9-1)

1.,
- $KP(fpr000) )

fs(f,galaman;Paer:sst)
= AR OVa{ 1 K [VEF TP +1,0,0)
K
+ VBP(f,9 = 1,9,0) - 23 PUf,p,0,0)]
wE

+ ?KBL[\/H 1P(f,2.9.¢+ 1) + VaP(f,p 9.9~ i)]

- %KTP(f,p,g,q)}-
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