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I. Phys:  Condens. Matter 4 (1992) 67754796. Printed in the UK 

Symmetry-adapted states for T@ (e+tz) Jahn-Teller systems 

L D Hallamt, C A Bates and J L Dunn 
Physics Department, The University, Nottingham NG7 ZRD, UK 

Received 10 April 1992 

AbslraeL A complete set of symmetty-adapted vibronic states for strongly coupled 
orthorhombic T@(e + 12) n' systems are derived analytically using projection operator 
techniques from the exact infinileaupling states. Details are given for the case of a T1 
orbital stale at a site of tetrahedral symmelly T d .  The purpose of this calculation h to 
provide a complete set of basis states from which it is possible to calculate analytically the 
secondwder reduction factors for this IT system as shown in the companion paper. The 
states are used here to obtain the energy level diagrams for the first few excited states 
using appropriate choices for the parameter values. The results compare favourably with 
numerical results obtained elsewhere for similar systems. 

1. Introduction 

In the course of modelling experimental data from deep-level impurities in bulk semi- 
conductors, it is clear that orbital triplet states are generally very strongly coupled 
to the surrounding lattice. It is also clear that T, orbital states in tetrahedral Td 
symmetry are often more strongly coupled to the t2 modes of vibration than to the e 
modes. In other examples involving TI orbital states, the coupling strengths are very 
similar such that the tetragonal and trigonal minima in the potential energy surface 
have very similar energies. If exact equality holds, the system is often referred to as 
a T@d Jahn-Teller (rr) system indicating explicitly that there is a continuum of equal 
energies in the potential energy surface such that the vibrations can be classified 
as having fivefold symmetry (see, e.g., O'Brien 1969, Bersuker and Polinger 1989). 
Our interest here is in the situation in which the coupling to the e and t, modes is 
approximately equal but additionally there are important quadratic couplings present 
that convert the orthorhombic saddle points into minima that have a lower energy 
than both the tetragonal and trigonal minima. This situation is usually referred to as 
an orthorhombic T@(e + t2) JT system. 

One of the most obvious examples of this type of JT effect is that of GaAs:C$+. 
Krebs and StauSS (1977) clearly showed that their EPR spectra exhibited orthorhombic 
symmetry. Recently, Parker el al (1990) re-analysed the original EPR data and, to- 
gether with new data obtained from thermally detected- (m-) EPR experiments, they 
confirmed in detail the original attributions of Krebs and Stauss (1977)-that the 4T, 
undergoes a T@(e + t2) JT effect. 

lb model systems such as these, it is necessary to construct effective Hamiltonians 
that contain the various electronic parameters describing the perturbations multiplied 
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by the rr reduction factors that arise from the coupling of the ion to the vibrations. 
First-order reduction factors reduce the size of the electronic parameters but second- 
order effects often introdum new terms. If the coupling is strong, second-order terms 
can dominate the effective Hamiltonian (Ham 1965). It is therefore important to 
be able to calculate the size of both first- and second-order reduction factors in an 
accurate way from basic JT theories. Very little work had been undertaken on second- 
order factors until very recently when Bates and Dunn (1989) calculated the first- and 
second-order factors for spin-orbit coupling for the T@e and T@t, JT systems based 
on their transformation method (Bates el a1 1987, Dunn 1988, Dunn and Bates 1989a). 
D u m  and Bates (1989b) carried out a similar analysis for the T@(e + tz) IT system. 
In all these calculations, symmetry-adapted vibronic ground states were used but the 
excited states were approximated to the so-called intinite-coupring states localized in 
the various potential energy minima. However, for T@e systems, the result was exact 
and agreed with that originally obtained by Ham (1965) but the results for the two 
other systems were only approximate. 

Calculations for T@t2 were improved, firstly, by Dunn er a1 (1990) using the 
symmetry-adapted excited states derived by Dunn (1989) and, subsequently, with the 
incorporation of so-called anisotropic effects in the oscillator frequencies (Bates el a1 
1991). The result was that analytical expressions were obtained by algebraic means 
that were in very good agreement with the numerical results of O’Brien (1990). 

The main aim of this paper is to undertake a calculation of the symmetry-adapted 
excited vibronic states for the T@(e + t2) JT system following the method previously 
applied to the T@tz JT system by Dunn (1989). The following paper (Hallam er a1 
1992) then uses these states to calculate accurately and analytically the corresponding 
second-order reduction factors and comments on the results obtained in relation to 
real systems. 

L D Hallam et a1 

2. The basis of the analytical method for TI ions 

2.1. The infinite-coupling approximation 

The basic JT Hamiltonian lor a T, ion in a tetrahedral cluster coupled linearly U) the 
e (Qs, Q,) and t, (Q4, Q5, Qs) modes of vibration can be written as 

+ ($+e) 
j=B,r,4,5,6 

where V,, VT are the e- and t2-type linear ion-lattice coupling constants, Pj is the 
momentum conjugate to Qj ,  and p is the mass and wE, wT the frequencies of the 
modes such that w8 = wI = w E  and w4 = w5 = ws = wT. The pj and T~ are orbital 
operators defined in terms of an isomorphic 1 = 1 by 

r4 = -(lYlz +i,ly) etc, (2.2) 2 p,g = 31, - 2 p, = -+(it + 12) 
where the orbital basis States are given by 

I 4  = 4”) - I - 1)) lu) = (i/fi)(Il) + I - 1)) 1.4 = 10) 
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referred to O r  as the twofold axis of quantization. Modes 4, 5, and 6 transform as 
yr, 22, and z y  respectively under Td symmetly. 

In the transformation and energy-minimization method developed originally by 
Bates el ul (1987) and Dunn (1988) for strongly coupled systems, a unitary transfor- 
mation 

was applied to 'H where the a, are free parameters chosen to  minimize the potential 
energy in the transfomed Hamiltonian 'k In the strong-coupling limit, the trans- 
formed Hamiltonian is dominated by which does not contain phonon operators, so 
the system k fixed into one of the energy minima. (The remaining parts, and G3, 
involve terms that can be regarded as perturbations as they describe both phonon and 
orbital excitations which are then conveniently associated with these energy minima.) 

In the transfomation method, the Q j  and Pj are treated as phonon operators 
via the standard relationships 

hpwj ' I 2  ' 1 2  

Q . =  J ( - 2 j W j )  (bj+b:) P .= i (y )  J (bj-bjC) (2.4) 

where b: and bj create and annihilate excitations of symmetry j respectively. 

form 
Using (2.4) the unitary transformation operator can be written in secondquantized 

U =cxp[FCj (b j -b : )  1 
where the coefficients C j  are defined in terms of the aj  by 

The part 9, of the transformed Hamiltonian is given by 

%, = -2I<E(,(p,c@ - dZ'p ,~ , )  - 21cT(r4c4 + r , ~ ,  + r6c6) 

where the coefficients IC, and KT are defined by 
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The six energy minima or wells (labelled by k = 1 to 6) are at positions -oljk)h 
in Q-space. Values of ay) and the corresponding transformed vibronic ground states 
are given in Bates et 01 (1987). 

The orthorhombic solutions cannot become absolute minima when only linear 
terms are included in the Hamiltonian. In the problem of interest here, it is therefore 
necessary to add in the quadratic coupling terms. The most appropriate is that of the 
bi-linear coupling ‘HE! (Sakamoto 1982) which, if of a suitable size, pushes the six 
orthorhombic saddle points into six absolute minima in the potential energy surface. 
lb a good approximation, this bi-linear term does not alter the values of the ay) and 
thus for the purposes of the derivation of the states, the bi-linear and other similar 
t e r m  can be omitted. 

22. Infinite coupling ercited scuta 

The ground states localized in the six orthorhombic wells can be transformed back 
to the original space by operating with the unitary transformation operator (2.5) and 
substituting the values of the U?) appropriate to the well in question. For example 

Id+ >= U,lZY+;O > 
where 

U, = exp [z(bo - b i )  + &(be - b:)] 
A w ,  

The states are often referred to as ‘Glauber’ states after Judd and Vogel (1975). 
Although the ground states localized in the wells do not contain phonon excitations, 
the presence of phonon creation operators in the unitary transformation operator 
means that untransformed states such as ICY; > do contain phonon excitations. As 
a result the untransformed states are automatically vibronic in nature without therc 
being a need for multiplying the electronic states by harmonic oscillator functions, as 
there was in earlier methods. 

In the infinite-coupling limit, the potential barriers separating the six potential 
energy minima can be considered as infinitely high with the ground electronic states 
completely localized within the wells. The localized vibronic excited states in the 
untransformed basis can be written as 

IC&; 0:~:4~5’6‘) lyz;; 0~~$4’5 ’6 ‘ )  I zz ; ;  0+;4‘5‘6‘) (29) 

where, for example, 4’ denotes T phonon excitations of the t, vibrational mode Q4. 
The cubic components of the e-type modes are defined by 

(2.10) 1 8 1 8 
10,) = -5~0) - + 10,) = --IO) 2 - ?I<) 10,) = 10) 

(2.11) 
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2.3. Finite coupling 

In finite coupling, the vibronic states associated with the six orthorhombic wells are not 
good eigenstates of the complete Hamiltonian as they are neither mutually orthogonal 
nor do they reflect the cubic symmetry of the system. However, as in the case of the 
T@(e + tz)  system, linear combinations of the untransfonned vibronic states may be 
taken that are good eigenstates as they are both cubic and partially orthogonalized. 
At this stage, the cubic states cease to be connected by a unitary transfonnation. 
Projection operator techniques were used to construct cubic ground states (Dunn 
1988) and cubic excited states (Dunn 1989) for the T@t, JT system from the various 
untransformed states associated with the trigonal wells. In the following section, the 
same techniques will be used to construct the required combinations in order to 
obtain the cubic states for the orthorhombic T@(e + tz) JT system. 

3. Symmetry-adapted excited states 

3.1. Use of projection operators 

A set of symmetry-adapted states may be obtained from a set of non-symmetrized 
states I S? > by the application of appropriate projection operators. The general 
theory is summarized in appendix 1, where it is shown that the set of projection 
operators { P i g , u  = 1 to ij} will project out of a state of arbitrary symmetry a set 
of basis stat= for the irreducible representation I'j or zero. Details of the method 
as applied to the T@t, system and expressions for the projection opcrators P& for 
T, symmetry are given in Dunn (19S9). The localized infinite-coupling states (2.9) 
can therefore be used as a basis for the construction of a complete set of symmetry- 
adapted excited states for the system. Due to the symmetry relations between the 
infinite-coupling states all the distinct symmetry-adapted excited states can be found 
by operating with all projection operators on one of the infinite-coupling states. As 
an example, applying the projection operator 

Pll - - 1. 8 (E - 3Ci - 3C," + 3 q  -!- 6JCz + 6JC: - 6JC: - 6JC:) 

to a general excited state localized in well 1, I<) = Isy'+; €':~;4"5~6'), gives 

?Til[) = (1 + (-l)r+s) (Isy;;O,P~:4'5'6') + ( - 1 ) 3 c ' ( s y ~ ; € ' ~ ~ ~ 4 ' 5 ' 6 ' )  

+ (-1)91zs;;e~E~485'6') - (-1)~~"+'lz+1;8yP~~4~5~6')). (3.1) 

The two other TI states are given by a cyclic permutation of z, y and z. The factor 
(1 + (-l)rta) will vanish when ( r +  s) takes odd integer values resulting in the 
constraint on the phonon quantum numbers that ( T  + s) must be even for this state. 

This approach is applied to the infinite-coupling state It) for all the irreducible 
representations of Td to generate a complete set of symmetry-adapted excited states 
for the system. The states, along with their transformation properties and the re- 
strictions on the phonon quantum numbers, are given in table 1 in terms of the 
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Table 1. Symmeliy-adapted w i l e d  sfafes in terms of coefficients c, appearing in equation 
(3.2), including rcrtrictions on phonon indices. 

142) 2 2 3 2 -1 -1 1 -1  -1 -1  1 -1 ( r t s )  c d d , r > a  
I+?, 0 0 0 0 1 1 -1 1 -1 - 1  1 -1 

I+?) 0 0 0 0 - 1  -1 -1 1 1 1 1 -1 (r  t a )  odd, r > a 
I+?) 2 2 2 -2 -1 -I - 1  I -1 -1 -1 1 

19:") 0 0 1 1 0 0 0 0 1 -1 0 0 
I + ; I ~ )  1 -I o o o o I I o o o o ( r + a )  wen 
I+p) 0 0 0 0 1 -1  0 0 0 0 1 1 

.. ... . . .  , ,  . .,l , , , , , .  ~ ,,., " 
~ ~~ 

19:;') 0 0 0 0 1 -1 1 1 0 0 0 0 

I+:;') 1 -1 1 1 0 0 0 0 0 0 0 0 
I+:;") 0 0 0 0 0 0 0 0 1 - 1  1 1 ( r t s ) o d d , r > a  

I+T,r) 0 0 1 1 0 0 0 0 -1 1 0 0 

l+y) 0 0 0 0 -1 1 0 0 0 0 1 1 
l+T;y) -1 I o o o 0 1 1 0 0 o o ( r + s ) e v e n  

I+::=) 0 0 0 0 -1 1 I 1 0 0 0 0 

l9;:a) -1 1 I 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 - 1  1 1 1 ( r + s ) o d d , r > a  

coefficients ci of the general state 

k # J ( P , % ~ , s , i ) )  = c , ~ z Y ! + : B , P E ~ ~  r s t  5 6 ) + ~ , ( - l ) " ~ ' l ~ y ' ; B , P ~ ~ 4 ~ 5 ~ 6 ~ )  

S T '  4- ca(-1)9[zy!+; B p i 4  5 6 ) + ~ ~ ( - l ) ~ ~ ' ~ * ( s ~ - ; B ~ & ~ 4 ~ 5 ' 6 ' )  

t ~ , l ~ ~ z ; ; o p : 4 ' 5 ~ 6 ~ )  + C6(-i)SfflyZJ_; ~ ; ~ : 4 * 5 ~ 6 ~ )  

+ c , ( - ~ ) ~ I Y z ; ; B ~ E ~ ~ ' ~ ~ ~ ~ )  + ~ ~ ( - i ) 9 f ~ + ~ ] ~ ~ l ~ ~ ~ ~ ~ 4 ~ 5 . 6 ~ )  
4- c,Izl;;Bpi4 3 x 7  5 6 ) + ~ ~ ~ ( - 1 ) ~ ~ ' ~ z r ' _ ; B ~ ~ ~ 4 ' 5 ' 6 ~ )  

+ cll(-i)qk2;; 0,pE;4 r t s  5 6 ) + c,2(-i)q+*+~Izl:; ep;4r5*135). 

(3.2) 

From table 1 the T, and Tz ground states are given by 

l & T J ) )  = by;) + I X Y l )  t 12.;) -I..'_) 
I P ( 0 N  = by;) + IZYl )  + I..;) - I..'-) 

(3.3) 

(3.4) 

respectively, with the y and z components given by cyclic permutation of 2, y and z. 
These are the only vibronic ground states allowed by the restrictions on the phonon 
numbers and agree with expressions previously obtained by Bates er al (1987). 
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3.2 The number of ercited sfafes 

The number of distinct vibronic excited states obtained using the projection operator 
method of the previous section can be calculated directly from the restrictions on the 
phonon numbers. By counting the number of excited states for specific numbers Of 
phonon excitations it is found that 

(a) for states with the restriction ( r  + s) even 

:(A4 + 1 ) ( N  + 2)z 
i ( M  + 1 ) ( N  + 1)' 

N even 
N odd 

number of states = 

(b) for states with the restriction ( r  + s) odd, T > s 

B(A4 + 1 ) N ( N  + 2) 

;(A4 + 1 ) ( N  + 1 ) ( N  + 3 )  

N even 
N odd 

number of states = 

where the total number of phonon excitations, L, is given by L = M + N with A4 
and N denoting the total number of e- and '>-type phonon excitations such that 

M = p +  q N = r +  s + t .  

The numbers of vibronic excited states for each irreducible representation of Td, 
calculated from the above results, are given in table 2. In appendix 2, the number of 
excited vibronic states is calculated using group theory and shown to agree with the 
results given in table 2, thus providing an important check on the completeness of 
the symmetry-adapted basis. 

Table 2. Number of vibmnic slates of each symmetry r with M (= p + 9) e-lype and 
N (= T + s + t )  tz-type phonon acilatians. 

r N even N odd 

3.3. Normalizafion factors 

The normalized symmetry-adapted excited states can be written in the general form 

I@-YP,45 r . s , t ) )  = Ni(P79,7-9S, t ) l 4 f Y ( P 3 4 , T , S > t ) )  

where I'y denotes the symmetry of the state. The normalization factors are deter- 
mined by the requirement 

(W?(P,4,  r,.s, W ? ( P , %  7, s ,  t ) )  = 1.  



where 

with 

@Jk) = cy - C ; ( k ’  

Substituting values for Dpk) shows that the only distinct values of S are: 

(a) S = 1 when j = k such that ( X i J ) l X i k ) )  = 1 
@) S = Se, when (Xp)[Xik)) # 0 
(c) S = when (X$)lX~”) = 0 

where 

and 

(3.7) 

(3.8) 

(Note that although does not appear in the calculation of the normalization 
factors, it is needed in the evaluation of certain perturbations and (3.9) is given for 
completeness.) 

For the T@(e + b) JT systems, the phonon overlap in (3.5) takes the general 
form 

(3.10) 

where a, p = I, y or z .  The phonon creatiodannihilation operators corresponding 
to dsetferent phonon modes commute and so the overlaps between phonon modcs can 
be considered separately. 
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For the Q4 mode 

(3.11) 

Using standard formulae, this overlap becomes 

and since (4'14'th-') = 61,T+h-i the overlap behveen Q4 modes can be written as 

(4'1exp [Dyk'b$]  exp [ -Dpk)b , ]  14p) = & ( l , r , j , k )  (3.12) 

where 

(3.13) 

with M = 8,~,4,5,6 and X = max(0, b - a ) .  Results similar to (3.12) are obtained 
for modes 5 and 6. 

The overlap between phonon modes of e-type symmetry is complicated by the 
appearance of I, y and z components of 0 and E .  However, the required operators 
can be obtained directly from (2.10) and (2.11). These operators a n  be used to write 
the stype phonon stat@ in terms of the phonon vacuum state IO), for example 

which on expansion of the bracketed term gives 

Similarly 

Combining the last two results and operating on the phonon vacuum state gives 

P q  
ice) = C ( - i ) q - e G ( p , q , a , P )  e P t q - P - P , " - P  ) (3.14) 

n=O p=o 

where 
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Similarly 
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P q  
IQ;€;)  = ~(-1)'G(p,q,a,O)IQ P t P - - - B E * - B  ) (3.16) 

e=Q B=o 

and 

~ Q : E $ )  = i e p E 9 ) .  (3.17) 
Using the above expansiom, the e-type phonon overlaps can be written as, for 

example, 

e x p [ D f k ) b $  + Dijk)b,f]  e x p [ - D f k ) b o  - D!jk)b,]  0 : ~ : )  

f s  

a=o p=o 
= C C(-l)'-*G(f,g,a,p)Fg(f + - a - P , P , ~ ,  k) 

x F , ( a + P , q , L k ) .  

The excited states localized in the six orthorhombic wells are effectively different 
solutions to the eigenvalue problem for GI.  As a result, these states are symmetry 
related under a cyclic permutation of I ,  y and z .  For example, using the permutation 

(; : :) 
the excited state localized in well 12 = 1 is transformed as 

Isy;; O c ~ ~ 4 ' 5 ~ 6 ' )  -+ [ y z ? ;  0 ~ ~ ~ 4 ' 5 ' 6 " ) .  

As a result of the symmetry between the excited States in infinite coupling, all 
overlaps ol the form (3.5) can be transformed by a cyclic permutation of s, y and z 
into one of six distinct overlaps 

( z y ; ;  Q!~,94'5"'6"lzy~; Q ; ~ z 4 ~ 5 ' 6 ' )  

(yz;; Q!~z4'5"'6"lry;; 0 ~ ~ ~ 4 ~ 5 ' 6 ' )  

(yz ' ;  Q ! ~ : 4 ' 5 ~ G " I r y ; ;  Q ~ ~ I 4 ' 5 ~ 6 ' )  

(zy:; Q { ~ ~ 4 ~ 5 ' " 6 " l z y ; ;  . 9 5 ~ $ 4 ~ 5 ~ 6 ' )  

( y z l ;  0!~:4'5"'6"I1y'_; Q:~z4'5'6')  

(yz;; Q ~ ~ ~ 4 ' 5 ~ 6 " l s y ~ ;  8 ~ ~ ~ 4 ~ 5 ' 6 ' ) .  
(3.18) 

This particular set of overlaps is chosen since only I and z components of Q and E 

are involved, which reduces the number of summations required in the calculation of 
the overlaps. 

Substituting for Dyk), the t2-type phonon overlaps can be witten, from (3.11) 
and (3.13), as 

F4( a ,  b ,  3 , l )  = F4( a ,  b , 3 , 2 )  = & ( a ,  b)  

F 4 ( a , b , 4 , 1 )  = F 4 ( a , b , 4 , 2 )  = ( - l )" tbF , (a ,b )  

F e ( a , b , 3 , 2 ) = F 4 ( a , b , 4 , 2 ) = F , ( a , b )  

F 6 ( a , 6 , 3 , 1 )  = F 4 ( a , b , 4 , 1 )  = ( - I )"+'&(a ,b)  

F , ( a , b , j , k ) = 6 a , b  for j = 3 . 4 a n d k = 1 , 2  
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where 

(3.19) 

The only e-type phonon overlaps required for (3.18) are those between z, or z 
and x components of O and E and can be written as 

(OLE;Iexp[Df')bt + D p k ) b f ] e x p [ - D f b ) b ,  - D$jk)b,]lO,pe',) = 6f,p6g,p 

(OzfE$lexp[Dpk)b$ + D!jk)b$]exp[-Dfk)b ,  - Dyk)b,]lO;~',)  = P ( f , p , g , q )  

respectively, where 

I s  
P ( f , p , g , q )  = C ( - l ) s - " G ( f , g , , , 4 ) F ~ ( l +  g - 0 -  P , P ) F : ( C r + P , d  

a=Op=O 

(3.20) 

and the functions Fh and F: are given by (3.19) with I i , / h w ,  replaced by 
-3KE/2hwE and -&IiE/2hwE respectively. 

Using these results the normalization factors for the symmetry-adapted excited 
states, Ni(p, q ,  r, s ,  t ) ,  a n  be calculated. The results are summarized in table 3. 

Table I Nomalizalion faclors lor symmerry-adapted sales I V y ( p , q ,  r , ~ ,  t ) ) .  
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4. Excited state energies 

The discussion in section (2.1) stated that the orthorhombic solutions for the T@(e 
+ b) rr system cannot be absolute minima when only linear terms are included in 
the Hamiltonian. When calculating the energy eigenvalues of the symmetry-adapted 
excited states it is therefore necessaly to include higher-order terms in the Hamilto- 
nian so that the system may show orthorhombic behaviour. The results of Sakamoto 
(1982), and references therein, show that of the four quadratic terms the bilinear term 
3127 has the most profound effect on the energy levels in the case of nearly equal 
coupling to the e and modes. This agrees with the earlier findings of Bersuker and 
Polinger (1974) that the bilinear term produces the most fundamental change in the 
shape of the adiabatic potential surface. Thus, in the following calcularions will 
be included to allow the system to become orthorhombic. In second-quantized form 
this term becomes 

L D Hallam et a1 

4.1. Matrix elements 

The energy expectation values of the vibronic States  are given by the matrix elemens 

where the Hamiltonian, with bilinear coupling included, is given by 
( V ( p , q , P , s ,  L)IW*lf'(p,q,r,s,t)) 

31' = 31 + 31%. (4.3) 
Calculation of these matrix elemen& requires evaluation of the matrix elements 

of 31' between the infinite coupling states, which take the general form 
(xij)'; ~ p l ~ q ~ ~ ~ ) ' ;  X A ~ ) ' , .  

As for the normalization factors, the symmetry relationships between the infinite- 
coupling states localized in different wells can be used to reduce the number of 
matrix elements required in the calculations. It is found that all matrix elements of 
31' between the infinite-coupling states can be wnsformed by a cyclic permutation of 
z, y and z into one of the seven distinct forms given below 
E,,(f,g,l,m, n ; p , q , r , s , t )  = (sy;; O { ~ ~ 4 ' 5 ~ 6 ~ l ' H ' l r y ; ;  B ~ ~ ~ 4 ' 5 ' 6 ' )  

E22(f,g,I,m,n;p,q,r,~, t) = (sui; ~ J ~ ~ 4 ' 5 ~ ~ " ~ ~ ' / r y ~ ; e ~ ~ ~ 4 ~ 5 ~ 6 ' )  

El2(f,grl,m, n ; p , q , r , s , t )  = (syi;  B ! ~ ~ 4 ' 5 ~ 6 " I ~ ' I + y L ; B ~ ~ ~ 4 ' 5 ~ 6 * )  

ES1(f, g, I, m, n; p ,  q,  P ,  s, t )  = (yz;; O~~z4'5"'6"131'1q;; B:~;4~5'6') 

E&,g,i,m, n; p,q,r ,s , t )  = (y2;; B ; ~ ~ , ~ ' ~ ~ G ~ ( X ' I + ~ ! . ;  

E42(frg,lrm, n ; p , q , r , s , t )  = (yzL; .9!~;4'5~6"171']ry;; e p $ 4 ~ 6 ~ )  

E 4 , ( f , g , 1 , m ,  n ; p , q , r , s , t )  = ( y z i ;  B~~z4'5~6"[31'Izy;; 0:~!4~5"6') 
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where this particular set is chosen as the kets contain only z components of the 0 
and E modes. After a considerable amount of algebra, and noting that f = p and 
g = q for diagonal elements, the matrix elements above can be written as 
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Table 4. Energies of r)mmetry-adapled slates lqy(p, p,  P, s,i)) in terms of meaicienls 
d ,  appearing in equation (4.5). 

State di dz d3 d4 dr, da d7 da 

1 12 2 1 - 1  - 1  I 1 - I  
2 12 2 -1  1 -1  1 1 - I  
3, 4 8 I -1  1 1 -1 0 0 
5,  6 24 1 1 - 1  1 - I  0 0 
5 s, 9 4 -2  0 - 1  0 0 0 0 
10, 11, 12 4 0 0 0 0 0 0 0 
13, 14, 15 4 2 0 1 0 0 0 0 
16, 17, 18 4 0 0 0 0 0 0 0 

4.2. Ground slate energies 

From tables 3 and 4 the energies of the T, and Tz vibronic ground states, equations 
(3.3) and (3.4) , are given by 

and 

where '0' denote. p = q = r = s = t = 0, with 

and 

(4.9) 
1 3 5 Kg A-= 1 ICE IC, f l ( O ;  0)  = --hwE - -hwr + -- + 2 - -ICBL-- 
2 4 4hwE h w ,  2 hwEtu+' 

These results agree with those obtained by Bates er a1 (1987) 

4.3. The energy ktsls 

In order to obtain physical insight into the energy level pattern, various assumptions 
need to be made on the values of the many parameters. We thus take wE = q. = w 
and then ensure that the orthorhombic wells are absolute minima by choosing the 
parameter 17 such that it satisfies the two relations 

(4.10) 

(4.11) 
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where q equals the ratio of the JT energies of the T@e system to that of the T@t, 
system pa te s  et al 1987, Dunn and Bates 1989b), and is defined by 

KE = (:)"*KT. (4.12) 

The energies of the first few vibronic states with 0 and 1 phonon excitations are 
plotted in figure 1 (q = 1.2, KBL = -0.082) and figure 2 (q = 0.8, KBL = -0.036). 

The potential energy minima in Q-space deepen with increasing coupling strength 
and the vibronic excited states are good approximations to the exact eigenstates of 
the system for strong coupling when the wells are separated by high potential barriers. 
For weak coupling, the energies of the states can easily exceed these barriers and the 
concept of distinct wells loses its meaning. Consequently, the method of constructing 
excited states obtained from symmetry-adapted combinations of states localized in the 
infiniteGoupling wells breaks down for weak coupling. It is interesting, nevertheless, 
to look at the behaviour of the excited states in the weak-coupling limit 

As KT -+ 0 the states should reduce to a product of orbital states and harmonic 
oscillator states of frequency w = wE = q centred at the origin in Q-space. As 
a result the energies of the states in the weak-doupling limit should have relative 
separations of hw. Figures 1 and 2 show that the majority of the lint few excited states 
do tend to integer values of hw for weak coupling. However, the Tz tunneling level 
tends to a value slightly below hw. The bilinear coupling constant KBL is bed  such 
that the orthorhombic solutions are absolute minima for the system. Consequently 
KBL remains finite as KT -+ 0 with the result that some of the excited states tend to 
values slightly lower than the correct integer multiples of hw. It should be noted that, 
for the orthorhombic solutions to be absolute minima, KBL < 0 with the equality 
only occurring for the special case of equal coupling, q = 1. For the T@t, JT system 
the numerical work of Caner and Ehglman (1966) and the analytical results of Dum 
(1989) show that some N-phonon states for strong coupling tend to ( N  + 1)-phonon 
states for weak coupling, which is also seen to be the case here. 

0.0 0 5  I .o 1 5  2 0  2 5  

K , h U  

Figure L Energies of lhe symmetry-adapted slates BS a funclion of K~1b.w for 0 and 
1 phonon excitations, relative U) lhe TI ground stale ( I )  = 1.2, KBL = 4.082.) 
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K , f i U  

Figure 2 Energies of the symmetryadapted stales as a function of K T / h  for 0 and 
1 phonon excitations, relative to the TI ground sate (q  = 0.8, KBL = 4.036.) 

Although states of different symmetry are mutually orthogonal, those of the same 
symmetry are not In principle the non-orthogonal states could be orthogonalized by 
standard procedures, but this is not attempted here because the results would be very 
complex and the advantages of having analytical expressions for the states, rather 
than attempting numerical solutions, would be lost. 

5. Conclusions 

A set of normalized symmetry-adapted excited states has been obtained for the T@(e 
+ t2) JT system by forming symmetry-adapted combinations of the infinitecoupling 
states localized in the potential energy minima in Qspace. Group theory has been 
used to show that the set of states is complete. General expressions for the energy 
expectation values of the states have been obtained and the restrictions on the allowed 
values of q and K, in order for the orthorhombic solutions to become absolute 
minima for the system are examined. 

We believe that this is the first time that such a set of symmetry-adapted cubic 
states have been calculated for the T@(e + 5) JT system Also very few other calcu- 
lations of the energies of the vibronic states exist in the literature. Some numerical 
results have been given by Sakamoto (1982) while Estreicher and Estle (1985) calcu- 
late the exact eigenvalues of the vibronic Hamiltonian with spin-orbit coupling for a 
spin of 112. Other calculations use the approximation of equal coupling for the e and 
t2 modes which is sometimes described as the T@d IT problem. We mention here the 
work of OBrien (1%9), Sakamoto (1982), Chancey and Judd (1983) and Chancey 
(1987) plus the discussion in the book by Bersuker and Polinger (1989). However, 
none of these tatter results are directly comparable with the calculations described 
here. 
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The main purpose of the calculation is to provide a much more reliable basis 
set of states from which the second-order reduction factors for the T@(e + tz) 
JT system can be calculated. The only other previous attempt to calculate these 
factors by analytical means was that published by two of the current authors (Dum 
and Bates 19S9b) but the factors were overestimated because of the neglect of all 
non-orthogonality. Although the states derived here are not completely orthogonal, 
they represent a considerable improvement on previous calculations. The results 
of improved calculations of second-order reduction factors using these states are 
described in the following paper (Hallam et 01 1992). 
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Appendix 1. Projection operators 

The projection operator method used in the construction of symmetry-adapted states 
is based on the Great Orthogonality Theorem 

where R is a symmetry operator of point group G, h is the order of L7 and l i  is the 
dimensionality of the ith irreducible representation r(i). 

>, k = 1 to l j }  form a basis for irreducible representation r (J )  then 
the completeness relation for the r(j) subspace gives 

If {I 

so that 

where 

(A1.2) 
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Multiplying (Al.2) on the left by r(')( R&, summing over all R E 5 and using the 
Great Orthogonality Theorem (AM) gives 

P&l&)) = 6; , j6p,JQ?))  (A1.3) 

L D Haihm et ai 

where the projection operator Pba is defined as 

Astate of arbitrary symmetry, IQ), can be expanded using the completeness condition 
for the total Wbert space spanned by the basis states of the irreducible representa- 
tions of G 

where 

XI" = {Q$) \Q)  

and c is the number of classes in G. Operating on IQ > with projection operator 
P i p  and using (A1.3) gives 

(A1.4) 

This result shows that the projection operator P i a  will project out of a state of 
arbitraly symmetry a basis state that transforms as row a of the irreducible represen- 
tation or zero. 

Appendix 2. Cnlculiltion of number of states 

In this scction, group theory is used to show that the numbers of states of each sym- 
metry for a given number of phonon excitations agree with those already obtained by 
the restriction on the phonon quantum numbers and given in table 2 This calculation 
is important in verifying that the correct number of states has been specified. 

In order to calculate the number of excited vibronic states using group theory it is 
sufficient to find the number of irreducible representations contained in the reducible 
representation formed by using the infinite-coupling excited states as a basis. The 
infinite-coupling state localized in the j t h  potential energy minima can bc written in 
the general form 

W.1) I$').'. x(J) .  x(J1 
orbill e 7 t )  
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where 1x2;) represents the orbital component and IX!’)) and IX:;”) e and type 
phonon components respectively. The reducible representation formed by vibronic 
states (A21) can therefore be written as the direct product of the component orbital 
and phonon representations 

rd = rhit B r p  ,.z~ riy) 
where 

riM) = re@ re@ re@. . . to M factors 

= rt2 B rh B rb @ . .  . to N factors 

and where M ( =  p+p)  and N ( =  r+ s +  1 )  are the number of e- and tz-type phonon 
excitations respectively. 

The group theory results used here only require the characters of the represen- 
tations, each of which are considered separately below. 

A21. The Torbit representation 

The six electronic basis states, [X:i;J, form the reducible representation 

rabic = T, + T~. ( A 2 4  

This result is obtained either by direct construction of the matrices forming rhit 
or by making use of the fact that the projection operator method of section 3.1 
gives vibronic ground states of TI and Tz symmetry. Using (A2.2) and the standard 
character table for Td the characters for rorbit are found to be 

xat.it(E) = Xorbil(%) = -2 Xorbil(6JC4) = = Xorbit(%) = O .  
W . 3 )  

A22. The rLM) and l$:) representations 

The characters of the representations formed by e and type phonon basis states 
are more difficult to calculate than those of the orbital states. The phonon states 
consist of degenerate phonon excitations and consequently for the e-type phonon 
modes the characters of the symmetric part of the direct product are required. 
The character of an operator R E Td in the riM) representation is given by (Heine 
1960) 

and substituting M = 0,1,2, ... into this result for each clas of Td gives the 
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required characters 

L D Hallam et al 

xiM)(E) = ( M  + 1) 

x i M ) ( " ~ )  = ( M  + 1) 

all M 

all M 

for M even 
0 for M odd 

for M even ( i  for M odd 

xLM)('JC4) = ( 
xiM)('JC2) = 

('42.4) 

for M / 3  integral 
for ( M  + 1 ) / 3  integral 
for ( M  + 2 ) / 3  integral. -1 

Similarly, the recursion formula for the characters of the representation formed using 
the N degenerate b-type phonon excitations (Heine 1960) 

gives characters 

all N 

for N even 
for N odd 

1 XIz (N) (E ) = - ( N  + 1 ) ( N  + 2 )  

( N  t 2 ) / 2  
- ( N  4- 1)/2 

for N / 4  integral 
for ( N  + 1)/4 or ( N  + 2) /4  integral 
for (N + 3)/4 integral 

x!;"(3cz) = 

-1 

( N  + 2 ) / 2  

( N  t 1 ) / 2  

for N even 
for N odd 

x$Y)('JC,) = 

1 for N / 3  integral 
X:Y)("c,) = c 0 for ( N  + 1 ) / 3  or ( N  + 2 ) / 3  integral. 

The reduction formula 

('42.5) 

gives the number of times, np ,  the irreducible representation r, appears in the 
reduction of rRd. Substituting the characters from (A2.3), (A2.4) and (A2.9, and 
noting that the number of vibronic excited states of symmetry p is equal to the 
number of times the irreducible representation r,, appears in rred multiplied by the 
dimensionality of r p ,  gives results identical with those calcuIated from the restrictions 
on the phonon indices given in table 2 
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Appendix 3. Functions used in expressions for state energies 

Definitions of the functions fi, fi and f3 used in expressions for the excited state 
energies are 

fi(f,g,z,m,n;P,q,T,S, t )  
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